

Disclosures

Line Unit

I have no financial relationships to disclose.

Overview

- Introduction
 The problem in adolescents
 Previous neurobiological work
 Conceptualizing brain-behavior
 relationships
 - Our previous work with the methods
- · 2 current studies in adolescents with NSSI
 - A cross-sectional imaging study
 A pilot treatment study
- (Very) preliminary results

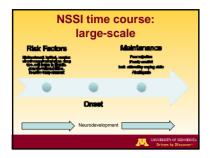
UNIVERSITY OF M

Non-suicidal Self Injury (NSSI)

The deliberate, direct destruction or alteration of body tissue, without conscious suicidal intent, but resulting in injury severe enough for tissue damage to occur.

Vinchel and Stanlev AJP 199

NSSI in adolescents


- Worldwide, 18% of adolescents report a history of NSSI
- Average onset 12-14 years
- Up to 4 times more common in girls than boys
- On average, people with NSSI report 13
 incidents in 12 months

NSSI and Adolescent Development

- As they face the challenges of this transition period, adolescents experiment with a range of coping mechanisms
- Some may be maladaptive such as NSSI, substance use, disordered eating behaviors, etc.

Spear Neuroscience Biobehy Rev 2000

		time cou nall scale		
5	Handha Manalazin Manalazin Manal		improvement in emotional Gisto Finitet, color	
Triggers (conflict, rejection, etc.)	٠	Salf-injury episoda	٠	
		Mahon Soc Sci Med 20 D'Connor BJP 2009	UNIVERSITY OF S	

	Nock's 4 Function Mo	del			
	Positive Reinforcement (PR)	Negative Reinforcement (NR)			
Automatic (A) (Intrapersonal)	APR Reward, sense of control	ANR Relieve tension, end depersonalization/dere alization			
Social (S) (Interpersonal)	SPR Gain sympathy and attention, set boundaries	SNR Avoid social situation			

Neurobiological Underpinnings: Techniques in previous work

- · Brain Imaging
- Physiological assessments

 cortisol, heart rate variability, defensive
- startle reflex, electrodermal skin response

Neurocognition

UNIVERSITY OF MINNES

Imaging and NSSI

- PET study in adults with NSSI: reduced 5HT binding in the prefrontal cortex
- fMRI study in adolescents with NSSI: greater orbitofrontal, inferior and middle frontal cortex activity while viewing NSSI pictures

Physiology

- Adolescents with NSSI showed...
- Diminished cortisol responses to a stressor
 Greater subjective emotional responses but blunted defensive startle reflex modulation by emotion
- Attenuated electrodermal response (EDR) during resting conditions but elevated EDR during frustration
- Similar heart rate variability to controls
- Greater sinus arrhythmia activity during negative mood induction in "parasuicidal" adolescents (combined NSSI and suicide attempters) compared to controls

t al Psychoneuroendocrinology 2012; Glenn et al Int J Psychophysiology 2011; Crowell sormal Child Psychology 2012; Nock et al J Consult Clin Psychol 2008; Crowell et al

Neurocognition

 Impulsivity is associated with nonclinical populations who engage in NSSI
 Adolescents with high-severity NSSI had

rd et al J Child Psychol Psychiatry 2009; at al <u>Psycho Med 2011: Sharo</u> et al JAACAP 20'

- Adolescents with high-severity NSSI had impaired spatial working memory, whereas those with low-severity NSSI showed impaired inhibitory control
- Youth with borderline traits may tend to "hypermentalize", or excessively and inaccurately attribute thoughts and feelings to others.

Research Question #1

- What are the developmental neurobiological underpinnings of adolescent NSSI?
 – Focus on neural circuitry
- Approach: Research Domains Criteria Project (RDoC)
- Identify psychological dimensions relevant
 - to NSSI that can be mapped more directly to neural systems

Brain-Behavior Relationships						
Psychological construct	System	Brain areas				
Emotional reactivity Poor coping Alexithymia	Emotion Regulation	amygdala, anterior cingulate, insula, prefrontal cortex				
Positive reinforcement Habit	Reward	Midbrain, ventral striatum, dorsal striatum orbitofrontal cortex, medial prefrontal cortex				
Rejection sensitivity Poor self esteem Peer connectedness Mentalization	Social Brain	Medial prefrontal, anterior cingulate, temporal-parietal junction, superior temporal sulcus, temporal pole				
Rumination Self-referential processes	Default Mode	posterior cingulate, cuneus, medial temporal lobes, medial prefrontal cortex, inferior parietal				
Impulsivity	Cognitive Control	Dorsolateral prefrontal cortex, thalamo-cortical				
Decreased sensitivity to pain	Pain	Somatosensory cortex, insula, anterior cingulate, posterior parietal cortex, superior temporal sulcus				

Research Question #2

 Does treatment with N-acetyl cysteine (NAC) reduce NSSI in adolescents?

ademic Health Center

ersity of Minnesota Ac

Does NAC impact brain circuitry?

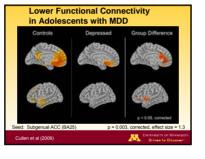
N-acetyl cysteine (NAC)

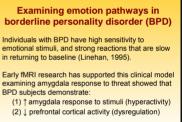
- Derivative of amino acid *L*-cysteine
 Complex mechanisms of action, impacting
 - Glutamate transmission
 - Oxidative balance
 Inflammatory pathways
 - Neurotrophins
- Useful in other psychiatric disorders

 Addiction, gambling, OCD, hair-pulling, skinpicking, schizophrenia, bipolar, autism

黒.

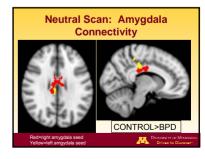
Berk et al TIPS 2013


Our previous work in relevant populations

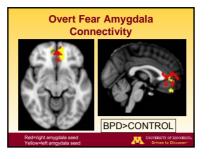

- We examined brain connectivity in
 Adolescents with MDD
- Adult young women with borderline personality disorder

UNIVERSITY OF

F=7.1, p=0.01, Effect size = 1.0


erpertz et al., 2001, Biological Psychiatry

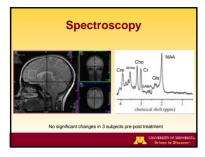
Proposed Amygdala Pathways


- Short Route (Bottom-Up): Direct connections between the thalamus and amygdala allow for a rapid response to potential threats in the environment
- Long Route (Top-Down): Connections between the prefrontal cortex and amygdala may allow for slower, cortically-driven interpretative aspects of emotion processing

Therageneries Monoscore

	Study Procedures	5
	Comprehensive clinical assessn	nent
2. N	IRI	
3. 1	reatment with NAC 600mg bid weeks 1-2	
- :	1200mg bid weeks 3-4	
•	1800mg bid weeks 5-8	
4. F	Repeat MRI	
		UNIVERSITY OF MINNES
	<u>A.</u>	Driven to Discover

Assessment Measures


- Kiddie-Schedule for Affective Disorders and Schizophrenia (KSADS-PL), Schedule for Clinical Disorders of DSM-IV (SCID) Deliberate Self Harm Inventory
- Inventory of Statements about Self-Injury Beck Depression Inventory-II
- Disturbance in Emotion Regulation Scale
- Symptom Checklist-90 Baratt Impulsivity Scale
- Toronto Alexithymia Scale Personality Assessment Inventory Iowa Gambling Task

MRI protocol

- · High-resolution T1 Anatomical
- Resting-state fMRI
- Diffusion tensor Imaging
- Task fMRI
- Passive emotion face viewing - Matching task: emotion faces vs neutral

- shapes
- Spectroscopy

Next Steps

- Neural circuitry of NSSI:
 Need large sample to better understand biologically-based heterogeneity in adolescents with NSSI
 Examine change over time: before onset, across episodes, across development
- episodes, across development Treatment with NAC: Randomized controlled trial of NAC for adolescents with self-harm Identify neural predictors of treatment response Identify neural predictors of treatment response Identify brain changes with successful treatment Move toward neurobiology-based personalized treatment approach

LixiveRsity of Min Driven to Disc

Acknowledgements

Collaboration and Staff Michael J. Miller Lynn Eberly Kaz Neison Kathieen M. Thomas Neredith Gunick-Stoeseet Kelwin O. Lim S. Charles Schulz Lori Lafövare Ana Borthova Alas Hovine Ana Borthova Alas Hovine Anarda Schesinger Losh Jappe

Funding Sources NIMH K23, R21 NARSAD University of Minnesota Graduate School Academic Heath Center, UMN Minnesota Medical Foundation Clinical Translational Science Institute, UMN Center for Magnetic Resonance Research, UMN

University of M

